

Die Winkelhalbierende

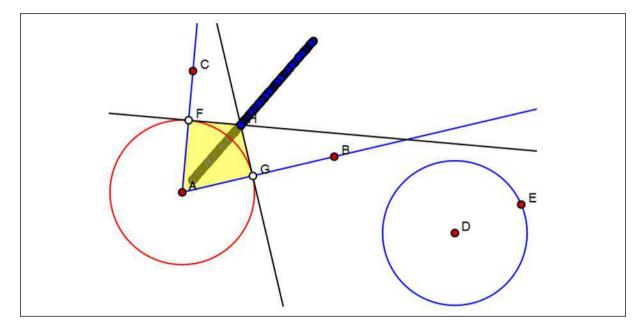
Lehrerhandreichung

Das Vorwissen der Schülerinnen und Schüler

- Der Kreis als Ortslinie
- Die Winkelhalbierende
- Senkrechte Geraden
- Der Abstand eines Punktes von einer Geraden
- Die Eigenschaften achsensymmetrischer Drachenvierecke

Notwendige Gesten

- Video 02 Die Konstruktion einer Kreislinie aus ihrem Mittelpunkt und einem Punkt auf der Kreislinie
- Video 03 Das Kopieren eines Kreises; das Verschieben dieser Kopie an ihrem Mittelpunkt auf einen anderen Punkt
- Video 05 Einen Punkt in den Spurmodus setzen
- Video 07 Eine Senkrechte zu einer Geraden zeichnen
- Video 10 Die Winkelhalbierende einzeichnen
- Video 12 Ein frei beweglicher Punkt wird zu einem Gleiter auf einer Geraden



Einführung zu Arbeitsblatt 3a | Die Winkelhalbierende

- Die Schülerinnen und Schüler zeichnen den Winkel BAC. Auf seinen Schenkeln liegen die beiden Schnittpunkte F und G mit einem roten Kreis, der eine Kopie des variablen blauen Kreises ist. Sie zeichnen die beiden Senkrechten zu den zwei Schenkeln in den Punkten F bzw. G. Ihr Schnittpunkt ist H.
- Durch Ziehen am Punkt E kann der Radius des blauen und damit roten Kreises verändert werden, so dass die Spur des Punktes H aufgezeichnet wird.
- Die Schülerinnen und Schüler erkennen, dass der Punkt H stets ein achsensymmetrisches Drachenviereck AGHF erzeugt. Folglich ist diese Spur die Symmetrieachse in diesen Drachenvierecken, die gleichzeitig als Halbierende zweier Innenwinkel fungiert. Die Punkte F und G besitzen somit in jeder Phase den gleichen Abstand zu den Schenkeln des Winkels BAC.
- Sie notieren sinngemäß: Alle Punkte, die jeweils den gleichen Abstand zu den Schenkeln eines Winkels besitzen, liegen auf der Winkelhalbierenden.

Anmerkungen

1. Die Schülerinnen und Schüler sehen zwar, dass es sich um Drachenvierecke handelt, aber eine saubere Begründung dafür fehlt. Diese ist nur durch einen Kongruenzbeweis mit Hilfe der Diagonalen [AH] im Viereck AGHF zu erbringen:

In den beiden Teildreiecken AGH und AHF gilt:

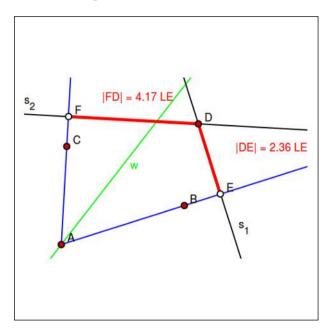
- Sie sind rechtwinklig.
- Sie besitzen die gemeinsame Hypotenuse [AH].
- Die Katheten [AF] und [AG] sind gleich lang.

Damit sind die beiden Dreiecke AGH und AHF kongruent (ssw_g) und deshalb haben die Winkel FAH und HAG gleiches Maß und die Seiten [FH] und [GH] sind gleich lang. Also sind die beiden Abstände zu den Schenkeln für jede Position von H gleich. Das Viereck AGHF ist somit ein achsensymmetrischer Drachen.

Unter Umständen werden jedoch im Lehrplan Begründungen oder Beweise für Kongruenzsätze erst **nach** dem Thema *Ortslinien und Ortsbereiche* behandelt:

- Ortslinien und Ortsbereiche
- Aufbau von kongruenz- und abbildungsgeometrischen Beweisen
- 2. Die ursprüngliche Figur auf dem Arbeitsblatt 3a hat den Vorteil, dass teilweise auf die Konstruktion der Winkelhalbierenden zurückgegriffen wird.

Einführung zu Arbeitsblatt 3b | Die Winkelhalbierende



- Die Abstände des frei beweglichen Punktes D im Feld des Winkels BAD zu dessen Schenkeln werden gemessen.
- Der Punkt D wird auf die Winkelhalbierende w gezogen und dort als Gleiter eingestellt. Wenn der Punkt D jetzt auf w bewegt wird, sind seine Abstände zu den Schenkeln paarweise gleich.
- Die Schülerinnen und Schüler erstellen eine Zeichnung, der diesen Sachverhalt an einem Beispiel darstellt. Sie notieren sinngemäß: Alle Punkte auf der Winkelhalbierenden haben jeweils den gleichen Abstand zu den Schenkeln des Winkels.